Effectiveness of omega-3 on some physiological aspects in aged rats’ kidneys

Authors

DOI:

https://doi.org/10.30539/3hkaky18

Keywords:

Aging, D-gal, kidney functions, oxidative biomarker, omega-3‎

Abstract

Background: The kidneys are particularly susceptible to the effects of aging. A major disruption of the body's homeostasis may occur from unfortunate events. It has been suggested that omega-3 can help reduce the effects of aging caused by D-galactose (D-gal). This study aimed to investigate the potential benefits of omega-3 in reducing dysregulation in kidney functions, redox homeostasis, and inflammatory markers in D-gal- treated rats. Methodology: Sixty adult male rats were randomly divided into four groups as follows: Control group (T1) were injected with normal saline(i/p)  and given orally soya bean oil for 90 days, group T2  were injected with D-galactose at 150 mg/kg BW i/p and given omega-3 (75 mg/ kg BW) for 90 days while group T3A  were injected with same dose of D-gal for 60 days then given orally omega-3 (75 mg/kg BW) for 30 days and finally group T3B  injected with D-gal at (150 mg/kg BW (i/p)) for 90 days. Blood samples were collected from the anesthetized rats to estimate the levels of blood urea nitrogen, cystatin C, protein carbonyl, catalase, tumor necrosis factor-alfa (TNF-α) and interleukin-1β (IL-1β) concentrations in serum. Furthermore, kidney tissue specimens have been collected for a histopathological investigation and to measure the expression of the kidney IL-10 gene. Results: The findings indicated a notable decrease in catalase, along with a significant elevation in blood urea nitrogen, cystatin C, albumin, protein carbonyl, TNF-α, and IL-1β levels in the T3B group. In addition, omega-3 displayed enhanced kidney barrier integrity; additionally, and T2 group showed reduced kidney inflammatory lesions and improved IL-10 gene expression. The findings showed that giving omega-3 to the T2 and T3A groups significantly enhanced kidney functions, inflammatory criteria, kidney barrier integrity, oxidative stress-related parameters, IL-10 gene expression, and histopathological abnormalities. Conclusions: Omega-3 exhibits preventive action against kidney dysfunctions induced by D-galactose in treated rats, as evidenced by modulation of kidney function tests and histopathological alteration through its antioxidant and anti-inflammatory capacities

Downloads

Download data is not yet available.

Author Biographies

  • Amira Mohammed, Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq.

    Department of Physiology, Biochemistry and Pharmacology, College of Veterinary       Medicine, University of Baghdad, Baghdad, Iraq

  • Bashar Sabah Sahib1, 1Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq

    Department of Physiology, Biochemistry and Pharmacology, College of Veterinary       Medicine, University of Baghdad, Baghdad, Iraq

  • Baraa Najim Al-Okaily, 1Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq

    1Department of Physiology, Biochemistry and Pharmacology, College of Veterinary       Medicine, University of Baghdad, Baghdad, Iraq

  • Nabil Al-Humadi, U.S Food and Drug Administration, Silver Spring, MD 20993, USA

    U.S Food and Drug Administration, Silver Spring, MD 20993, USA

References

‏Al-Dabbagh, A. S. M., Mshemish, B. A. R., & Al-Mugdadi, S. F. H. (2024). Investigating the potential protective ‎effects of omega-3 against doxorubicin-induced renal injury in rats through modification of antioxidant ‎markers. Immunopathologia Persa. https://doi.org/10.34172/ipp.2024.41707

Al-Khaqani, B., & Mohammed, A. (2024). Ovalbumin-induced asthma in rats is alleviated by resveratrol ‎treatment. Journal of Animal Health & Production, 12, 121-127. ‎https://doi.org/10.17582/journal.jahp/2024/12.2.121.127

Al-Kurdy, M. J. J. (2020). The effect of black currant selenium nanoparticles on dyslipidemia and oxidant-‎antioxidant status in D-galactose treated rats. Kufa Journal for Veterinary Medical Sciences, 11(1). ‎https://doi.org/10.36326/kjvs/2020/v11i13300

Al-Okaily, B.N.(2024).Unveiling the Mysteries of Oxidative Stress: An Insightful Review of Recent Studies, ‎Journal of Animal Health & Production. 12 (3), 395-412. ‎https://doi.org/10.17582/journal.jahp/2024/12.3.395.412

Asemi, Z., Soleimani, A., Shakeri, H., Mazroii, N., & Esmaillzadeh, A. (2016). Effects of omega-3 fatty acid plus ‎alpha-tocopherol supplementation on malnutrition–inflammation score, biomarkers of inflammation ‎and oxidative stress in chronic hemodialysis patients. International Urology & Nephrology, 48, 1887-‎‎1895.‎‏‎ https://doi.org/10.1007/s11255-016-1399-4

Ashtiyani, S. C., Najafi, H., Kabirinia, K., Vahedi, E., & Jamebozorky, L. (2012). Oral omega-3 fatty acid for ‎reduction of kidney dysfunction induced by reperfusion injury in rats. Iranian Journal of Kidney ‎Diseases, 6(4), 275.‎

Bodur, M., Yilmaz, B., Ağagündüz, D., & Ozogul, Y. (2025). Immunomodulatory Effects of Omega‐3 Fatty ‎Acids: Mechanistic Insights and Health Implications. Molecular Nutrition & Food Research, 69(10), ‎e202400752. https://doi.org/10.1002/mnfr.202400752

Buoite Stella, A., Gortan Cappellari, G., Barazzoni, R., & Zanetti, M. (2018). Update on the impact of omega 3 ‎fatty acids on inflammation, insulin resistance and sarcopenia: a review. International Journal of ‎Molecular Sciences, 19(1), 218.‎‏‎ https://doi.org/10.3390/ijms19010218

Calder P. C. (2010). Omega-3 fatty acids and inflammatory processes. Nutrients, 2(3), 355–374. ‎https://doi.org/10.3390/nu2030355

Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-‎Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the ‎pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198. ‎https://doi.org/10.3389/fchem.2023.1158198

Chen, Z., Mao, Q. Y., Zhang, J. Y., Wu, Y. X., Shan, X. F., Geng, Y., & Xiang, R. L. (2025). Cellular Senescence ‎Contributes to the Dysfunction of Tight Junctions in Submandibular Glands of Aging Mice. Aging ‎Cell, e14470.‎‏‎ https://doi.org/10.1111/acel.14470

Colussi, N. A., Todaro, J. S., Rodríguez, J. P., Olea, G. B., Ferrini, L. A., Stoyanoff, T. R., & Aguirre, M. V. (2023). ‎Dietary supplementation with integral chia and flax flours ameliorates systemic inflammation. ‎Medicina, 84(2), 206–220. https://pubmed.ncbi.nlm.nih.gov/38683505

Costea, L., Mészáros, Á., Bauer, H., Bauer, H.-C., Traweger, A., Wilhelm, I., Farkas, A. E., & Krizbai, I. A. (2019). ‎The Blood–Brain Barrier and Its Intercellular Junctions in Age-Related Brain Disorders. International ‎Journal of Molecular Sciences, 20(21), 5472. https://doi.org/10.3390/ijms20215472. ‎

da Silva Batista, E., Nakandakari, S. C. B. R., Ramos da Silva, A. S., Pauli, J. R., Pereira de Moura, L., Ropelle, E. ‎R., & Cintra, D. E. (2024). Omega-3 pleiad: The multipoint anti-inflammatory strategy. Critical Reviews ‎in Food Science & Nutrition, 64(14), 4817-4832. https://doi.org/10.1080/10408398.2022.2146044

de Lima, K., Mazur, C. E., Vicente Cavagnari, M. A., Castilho, A. J., & Schiessel, D. L. (2023). Omega-3 ‎supplementation effects on cardiovascular risk and inflammatory profile in chronic kidney disease ‎patients in hemodialysis treatment: An intervention study. Clinical Nutrition ESPEN, 58, 144–151. ‎https://doi.org/10.1016/j.clnesp.2023.09.914

Ding, G., Shao, Q., Yu, H., Liu, J., Li, Y., Wang, B., Sang, H., Li, D., Bing, A., Hou, Y., & Xiao, Y. (2022). Tight ‎Junctions, the Key Factor in Virus-Related Disease. Pathogens, 11(10), 1200. ‎https://doi.org/10.3390/pathogens11101200

Dun, Y., M. Liu, J. Chen, et al. (2018). Regulatory Effects of Saponins From Panax japonicus on Colonic ‎Epithelial Tight Junctions in Aging Rats. Journal of Ginseng Research 42(1), 50–56. ‎https://doi.org/10.1016/j.jgr.2016.12.011

Durkin, L. A., Childs, C. E., & Calder, P. C. (2021). Omega-3 polyunsaturated fatty acids and the intestinal ‎epithelium—a review. Foods, 10(1), 199. ‎‏https://doi.org/10.3390/foods10010199

El-Emam, S. Z., Soubh, A. A., Al-Mokaddem, A. K., & Abo El-Ella, D. M. (2020). Geraniol activates Nrf-2/HO-1 ‎signaling pathway mediating protection against oxidative stress-induced apoptosis in hepatic ‎ischemia-reperfusion injury. Naunyn-Schmiedeberg's Archives of Pharmacology, 393(10), 1849-1858.‎‏‎ ‎https://doi.org/10.1007/s00210-020-01887-1

El-Horany, H. E., Gaballah, H. H., & Helal, D. S. (2020). Berberine ameliorates renal injury in a rat model of D-‎galactose-induced aging through a PTEN/Akt-dependent mechanism. Archives of Physiology & ‎Biochemistry, 126(2), 157–165. https://doi.org/10.1080/13813455.2018.1499117‎

Fang, Y., Gong, A. Y., Haller, S. T., Dworkin, L. D., Liu, Z., & Gong, R. (2020). The ageing kidney: Molecular ‎mechanisms and clinical implications. Ageing Research Reviews, 63, 101151.‎‏‎ ‎https://doi.org/10.1016/j.arr.2020.101151

Farhana, A., & Lappin, S. L. (2023). Biochemistry, lactate dehydrogenase. StatPearls - NCBI Bookshelf. ‎https://www.ncbi.nlm.nih.gov/books/NBK557536

Fazelian, S., Moradi, F., Agah, S., Hoseini, A., Heydari, H., Morvaridzadeh, M., & Heshmati, J. (2021). Effect of ‎omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients ‎with chronic kidney disease: A systematic review and meta-analysis. BMC Nephrology, 22(1), 157-165. ‎https://doi.org/10.1186/s12882-021-02351-9

Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for valid histopathologic scoring in ‎research. Veterinary Pathology, 50(6), 1007-1015. https://doi.org/10.1177/0300985813485099

Hamady, J. J., & Al-Okaily, B. N. (2022). Alveolar gene expression of tight junction protein in nicotine rats ‎treated with zinc and vitamin D. International Journal of Health Sciences, 6(S9), 232-246.‎‏‎ ‎https://doi.org/10.53730/ijhs.v6nS9.12218

Ho, H. J., & Shirakawa, H. (2022). Oxidative stress and mitochondrial dysfunction in chronic kidney disease. ‎Cells, 12(1), 88.‎‏‎ https://doi.org/10.3390/cells12010088

Hortobagyi, D., Grossmann, T., Kirsch, A., Winter, C., Roblegg, E., & Gugatschka, M. (2024). Exploring the anti-‎inflammatory potential of topical hyaluronic acid for vocal fold injury in a rat model. European ‎Archives of Oto-Rhino-Laryngology, 281(1), 301-310. https://doi.org/10.1007/s00405-023-08278-1

Khudair, N. T., & Al-Okaily, B. N. (2022). Renal ameliorating effect of resveratrol in hydrogen peroxide induced ‎male rats. Iraqi Journal of Veterinary Science, 36(3), 571–577. ‎https://doi.org/10.33899/ijvs.2022.130939.1898

Kovesdy, C. P. (2022). Epidemiology of chronic kidney disease: an update. Kidney International Supplements, ‎‎12(1), 7-11.‎‏‎ https://doi.org/10.1016/j.kisu.2021.11.003

Lee, J. Y., Son, Y. K., Lee, M. H., Lee, S. M., Kim, S. E., & An, W. S. (2023). Omega-3 fatty acids upregulate Nrf2 ‎expression and attenuate apoptosis, inflammation, and fibrosis in a rat model of cyclosporine-induced ‎nephropathy. Kosin Medical Journal, 38(3), 184-192. https://doi.org/10.7180/kmj.23.112

Li, J., Zuo, H. L., Huang, H. Y., Zhang, T., Bai, J. W., & Huang, H. D. (2025). Dietary Omega-3 PUFAs in ‎Metabolic Disease Research: A Decade of Omics-Enabled Insights (2014–2024). Nutrients, 17(11), ‎‎1836.‎‏‎ https://doi.org/10.3390/nu17111836

Li, P., Ma, Y., Wang, X., Li, X., Wang, X., Yang, J., & Liu, G. (2024). The protective effect of PL 1-3 on D-‎galactose-induced aging mice. Frontiers in Pharmacology, 14, 1304801.‎‏‎ ‎https://doi.org/10.3389/fphar.2023.1304801

Liu, B., Hu, Y., Tian, D., Dong, J., & Li, B. F. (2024). Assessing the effects of tempol on renal fibrosis, ‎inflammation, and oxidative stress in a high-salt diet combined with 5/6 nephrectomy rat model: ‎utilizing oxidized albumin as a biomarker. BMC Nephrology, 25(1), 64.‎‏‎ ‎https://doi.org/10.1186/s12882-024-03495-0

Lobato, T. B., Santos, E. S. D. S., Iser-Bem, P. N., Falcão, H. D. S., Gimenes, G. M., Pauferro, J. R. B., & Gorjão, R. ‎‎(2024). Omega-3 Fatty Acids Weaken Lymphocyte Inflammatory Features and Improve Glycemic ‎Control in Nonobese Diabetic Goto-Kakizaki Rats. Nutrients, 16(23), 4106. ‎https://doi.org/10.3390/nu16234106

Martinovic, J., Stojanovic, I. G., Nesic, S., Todorovic, A., Bobic, K., Stankovic, S., & Drakulic, D. (2025). Chronic ‎oral D-galactose induces oxidative stress but not overt organ dysfunction in male Wistar rats. Current ‎Issues in Molecular Biology, 47(3), 161.‎‏‎ https://doi.org/10.3390/cimb47030161

Pan, H., Feng, W., Chen, M., Luan, H., Hu, Y., Zheng, X., & Mao, Y. (2021). Alginate oligosaccharide ameliorates ‎d‐galactose‐induced kidney aging in mice through activation of the Nrf2 signaling pathway. BioMed ‎Research International, 2021(1), 6623328.‎‏‎ https://doi.org/10.1155/2021/6623328

Partridge, L., Deelen, J., & Slagboom, P. E. (2018). Facing up to the global challenges of ageing. Nature, ‎‎561(7721), 45–56. https://doi.org/10.1038/s41586-018-0457-8

Pawluk, H., Kołodziejska, R., Grześk, G., Woźniak, A., Kozakiewicz, M., Kosinska, A. & Kozera, G. (2022). ‎Increased oxidative stress markers in acute ischemic stroke patients treated with thrombolytics. ‎International Journal of Molecular Sciences, 23(24), 15625.‎‏‎ https://doi.org/10.3390/ijms232415625

Peng, R., Liu, K., Li, W., Yuan, Y., Niu, R., Zhou, L., & Wu, T. (2021). Blood urea nitrogen, blood urea nitrogen ‎to creatinine ratio and incident stroke: the Dongfeng-Tongji cohort. Atherosclerosis, 333, 1-8.‎‏‎ ‎https://doi.org/10.1016/j.atherosclerosis.2021.08.011

Qiu, L., Ma, Z., Li, J., Wu, Z., Dai, L., Long, R., Hu, L., Sun, J., Hu, M., & Li, Y. (2024). Development of a ‎spontaneous model of renal interstitial fibrosis in NOD/SCID mice: Aging-induced pathogenesis. PloS ‎One, 19(12), e0315437. https://doi.org/10.1371/journal.pone.0315437

Saeed, A. I., Rieder, S. A., Price, R. L., Barker, J., Nagarkatti, P., & Nagarkatti, M. (2012). Acute lung injury ‎induced by Staphylococcal enterotoxin B: disruption of terminal vessels as a mechanism of induction ‎of vascular leak. Microscopy and Microanalysis: the Official Journal of Microscopy Society of ‎America, Microbeam Analysis Society, Microscopical Society of Canada, 18(3), 445–452. ‎https://doi.org/10.1017/S1431927612000190

Sala-Vila, A., Fleming, J., Kris-Etherton, P., & Ros, E. (2022). Impact of α-linolenic acid, the vegetable ω-3 fatty ‎acid, on cardiovascular disease and cognition. Advances in Nutrition, 13(5), 1584-1602.‎‏‎ ‎https://doi.org/10.1093/advances/nmac016

Sarkar, D., & Fisher, P. B. (2006). Molecular mechanisms of aging-associated inflammation. Cancer Letters, ‎‎236(1), 13–23. https://doi.org/10.1016/j.canlet.2005.04.009

Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature ‎Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73

Sinuani, I., Beberashvili, I., Averbukh, Z., & Sandbank, J. (2013). Role of IL-10 in the progression of kidney ‎disease. World Journal of Transplantation, 3(4), 91–98. https://doi.org/10.5500/wjt.v3.i4.91

Sundaram, T. S., Giromini, C., Rebucci, R., Pistl, J., Bhide, M., & Baldi, A. (2022). Role of omega-3 ‎polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and ‎immunity in animals. Journal of Animal Science & Biotechnology, 13(1), 40.‎‏‎ ‎https://doi.org/10.1186/s40104-022-00690-7

Suvarna, K. S., Layton, C., & Bancroft, J. D. (2018). Bancroft's theory and practice of histological techniques. In ‎Elsevier eBooks. https://doi.org/10.1016/c2015-0-00143-5

Wang, C. C., Chang, T. Y., Peng, P. J., Chan, D. C., Chiang, C. K., & Liu, S. H. (2024). Role of advanced ‎glycation end-products in age-associated kidney dysfunction in naturally aging mice. Life Sciences, ‎‎354, 122984.‎‏‎ https://doi.org/10.1016/j.lfs.2024.122984

Wati, F. A., Budiningsih, F., Wijaya, D. T., Arifin, A., & Susilo, R. S. B. (2025). The effect of D-galactose on ‎inflammaging markers, appendicular muscle mass, fat-to-muscle ratio, and physical endurance to ‎accelerate aging in mice. Journal of Research in Pharmacy, 29(2), 713-721.‎‏‎ ‎https://doi.org/10.12991/jrespharm.1664941

Xie, S. H., Li, H., Jiang, J. J., Quan, Y., & Zhang, H. Y. (2021). Multi-Omics Interpretation of Anti-Aging ‎Mechanisms for ω-3 Fatty Acids. Genes, 12(11), 1691. https://doi.org/10.3390/genes12111691

Zhou, M., Zhang, Y., Shi, L., Li, L., Zhang, D., Gong, Z., & Wu, Q. (2024). Activation and modulation of the ‎AGEs-RAGE Axis: Implications for inflammatory pathologies and therapeutic interventions-A review. ‎Pharmacological Research, 206, 107282. https://doi.org/10.1016/j.phrs.2024.107282‎

Downloads

Published

2025-12-28

How to Cite

Effectiveness of omega-3 on some physiological aspects in aged rats’ kidneys. (2025). Experimental and Applied Veterinary Research Journal, 1(1), 1-13. https://doi.org/10.30539/3hkaky18

Similar Articles

You may also start an advanced similarity search for this article.