Molecular detection of the K2 serotype of hyper virulent Klebsiella pneumoniae in local soft cheese
DOI:
https://doi.org/10.30539/a743x179Keywords:
hvKp, K2 serotype, local soft cheeseAbstract
Background: Klebsiella pneumoniae (K. pneumoniae) is an increasingly important threat to public health since the emergence of hyper virulent strains. This study aimed to evaluate the presence of hyper virulent Klebsiella pneumoniae (hvkp) in the milk and milk products. Methodology: One hundred cow's milk and fifty local soft cheese samples from different rural areas and local markets in Baghdad city were screened. HiCrome™ Klebsiella selective agar base and indole test were used initially for bacterial identification. The isolates were also validated by Vitek®2 Compact system with the amplification of the 16S rRNA gene followed by nucleotide sequencing. Results: K. pneumoniae was totally diagnosed in thirty-three (22%) samples. PCR indicated that one (3.03%) isolate from the local soft cheese contained the K2 serotype of hvkp, together with the regulator of mucoid phenotype A (rmpA) gene and exhibited a high degree of multidrug resistance (MDR). The K2 serotype of the hvkp isolate and the rmpA gene were registered at National Center for Biotechnology Information (NCBI) under the accession numbers PX055694.1 and PX055698.1, respectively. Conclusions: The local soft cheese represents a potential source of hvkp strain; thus, there is a need to improve control and prevention strategies, particularly in the field of milk production.
Downloads
References
Abbas, R., Chakkour, M., Zein El Dine, H., Obaseki, E. F., Obeid, S. T., Jezzini, A., Ghssein, G., & Ezzeddine, Z. (2024). General overview of Klebsiella pneumoniae: Epidemiology and the role of siderophores in its pathogenicity. Biology, 13(2), 78. https://doi.org/10.3390/biology13020078
AlKhafaji, M. H., Mohsin, R. H., & Alshaikh Faqri, A. M. (2024). Food additive mediated biosynthesis of AgNPs with antimicrobial activity against hypermucoviscous enterotoxigenic foodborne Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278–295. https://doi.org/10.37077/25200860.37.1.21
Azwai, S. M., Lawila, A. F., Eshamah, H. L., Sherif, J. A., Farag, S. A., Naas, H. T., Garbaj, A. M., El Salabi, A. A., Gammoudi, F. T., & Eldaghayes, I. M. (2024). Antimicrobial susceptibility profile of Klebsiella pneumoniae isolated from some dairy products in Libya as a foodborne pathogen. Veterinary World, 17(5),1168-1176. https://doi.org/10.14202/vetworld.2024.1168-1176
Al-Busaidi, B., AL Muzahmi, M., AL Shabibi, Z., Rizvi, M., AL Rashdi, A., AL Jardani, A., Farzand, R., & AL Jabri, Z. (2024). Hypervirulent capsular serotypes K1 and K2 Klebsiella pneumoniae strains demonstrate resistance to serum bactericidal activity and Galleria mellonella lethality. International Journal of Molecular Sciences, 25 (3), 1944. https://doi.org/10.3390/ijms25031944
Bonardi, S., Cabassi, C. S., Fiaccadori, E., Cavirani, S., Parisi, A., Bacci, C., Lamperti, L., Rega, M., Conter, M., Marra, F., Crippa, C., Gambi, L., Spadini, C., Iannarelli, M., Paladini, C., Filippin, N., & Pasquali, F. (2023). Detection of carbapenemase- and ESBL-producing Klebsiella pneumoniae from bovine bulk milk and comparison with clinical human isolates in Italy. International Journal of Food Microbiology, 387, 110049. https://doi.org/10.1016/j.ijfoodmicro.110049
Choby, J. E., Howard‑Anderson, J., & Weiss, D. S. (2020). Hypervirulent Klebsiella pneumoniae: Clinical and molecular perspectives. Journal of Internal Medicine, 287(3), 283–300. https://doi.org/10.1111/joim.13007
Clinical and Laboratory Standards Institute (CLSI). (2024). Performance standards for antimicrobial susceptibility testing, 34th ed., CLSI document M100, Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m100
Dhay, A. A., & Makk, M. A. (2023). Study microbial content of locally produced and sold milk products (the local white soft cheese and the local cream) in Al‑Muthanna markets. Journal of Population Therapeutics and Clinical Pharmacology, 30 (5), 372–377. https://doi.org/10.47750/jptcp.30.05.038
Rodrigues, D., G. S. Baldissera, D. Mathos, A. Sartori, A. P. Zavascki, & M. H. Rigatto. (2021). Amikacin for the treatment of carbapenem-resistant Klebsiella pneumoniae infections: Clinical efficacy and toxicity. Brazilian Journal of Microbiology, 52(4), 1913–1919. https://doi.org/10.1007/s42770-021-00551
Enferad, E., & Mahdavi, S. (2020). Antibiotic resistance pattern and frequency of some β-lactamase genes in Klebsiella pneumoniae isolated from raw milk samples in Iran. Journal of the Hellenic Veterinary Medical Society, 71(4), 2455–2462. https://doi.org/10.12681/jhvms.25925
Gelbíčová, T., Kořená, K., Pospíšilová-Hlucháňová, L., Straková, N., & Karpíšková, R. (2020). Dissemination and characteristics of Klebsiella spp. at a processed cheese plant. Czech Journal of Food Sciences, 39(2),113-121. https://doi.org/10.17221/232/2020-CJFS
Jin, S.-S., Wang, W.-Q., Jiang, Y.-H., Yu, Y.-T., & Wang, R.-L. (2025). A comprehensive overview of Klebsiella pneumoniae: Resistance dynamics, clinical manifestations, and therapeutic options. Infection and Drug Resistance, 18, 1611–1628. https://doi.org/10.2147/IDR.S502175
Kashaf, J., Ejaz, H., Younas, S., Alanazi, A., Yasmeen, H., & Rehman, A. (2022). Detection of Klebsiella pneumoniae antibiotic‑resistant genes: An impending source of multidrug resistance dissemination through raw food. Saudi Journal of Biological Sciences, 29(5), 3347–3353. https://doi.org/10.1016/j.sjbs.02.020
Khalil, N. K., Al‑Taii, N. A., & Mahmood, N. M. (2021). New strain of NNN‑Klebsiella pneumoniae isolated from cheese by molecular technique in Iraq. Indian Journal of Ecology, 48 (15), 219–222.
Khudhir, Z. S. (2021). Evaluation of the antibacterial activity of brine, nisin solution and ozonated water against E. coli O157:H7 in experimentally produced local soft cheese. Iraqi Journal of Veterinary Medicine, 45(1), 17–21. https://doi.org/10.30539/ijvm.v45i1.1035
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson‑Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug‑resistant, extensively drug‑resistant and pandrug‑resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Optimase (n.d) Optimase ProtocolWriter™ online application and using conventional PCR thermocycler. Computer software description. https://www.optimase.com
Pinpimai, K., Banlunara, W., Roe, W. D., Dittmer, K., Biggs, P. J., Tantilertcharoen, R., Chankow, K., Bunpapong, N., Boonkam, P., & Pirarat, N. (2022). Genetic characterization of hypervirulent Klebsiella pneumoniae responsible for acute death in captive marmosets. Frontiers in Veterinary Science, 9, 940912. https://doi.org/10.3389/fvets.2022.940912
Ma, Q., Zhu, Z., Liu, Y., Wang, J., Pan, Z., Yao, H., & Ma, J. (2023). Keeping alert to the hypervirulent K1, K2, K3, K5, K54 and K57 strains of Klebsiella pneumoniae within dairy production process. Microbes and Infection, 25(5),105106. https://doi.org/10.1016/j.micinf.2023.105106
Russo, T. A., Olson, R., Fang, C.-T., Stoesser, N., Miller, M., & Macdonald, U. (2018). Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. Journal of Clinical Microbiology, 56(9), e00776–e00818. https://doi.org/10.1128/JCM.00776-18
Saddam, S., Khan, M., Jamal, M., Rehman, S. U., Slama, P., & Horký, P. (2023). Multidrug resistant Klebsiella pneumoniae reservoir and their capsular resistance genes in cow farms of district Peshawar, Pakistan. PLoS ONE, 18 (2), e0282245. https://doi.org/10.1371/journal.pone.0282245
Taha, M. S., Elkolaly, R. M., Elhendawy, M., Elatrozy, H., Amer, A. F., Helal, R. A. E. F., Salem, H., Elfeky, Y. G., Harkan, A., & Mashaal, R. G. (2024). Phenotypic and genotypic detection of hypervirulent Klebsiella pneumoniae isolated from hospital‑acquired infections. Microorganisms, 12(12), 2469. https://doi.org/10.3390/microorganisms12122469
Wang, Q., Yu, H., Pan, X., Huang, W., Lalsiamthara, J., Ullah, S., Xu, Y., & Lu, A. (2025). Exploring current hypervirulent Klebsiella pneumoniae infections: Insights into pathogenesis, drug resistance, and vaccine prospects. Frontiers in Microbiology, 16, 1604763. https://doi.org/10.3389/fmicb.2025.1604763
Wareth, G., & Neubauer, H. (2021). The animal‑foods‑environment interface of Klebsiella pneumoniae in Germany: An observational study on pathogenicity, resistance development and the current situation. Veterinary Research, 52 (16). https://doi.org/10.1186/s13567-020-00875-w
Yanping Li, S. Kumar, L. Zhang, H. Wu, & H. Wu. (2023). Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Medicine, 18(1), 20230707. https://doi.org/10.1515/med-2023-0707
Zhang, S., Yang, G., Ye, Q., Wu, Q., Zhang, J., & Huang, Y. (2018). Phenotypic, genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Frontiers in Microbiology, 9, 289. https://doi.org/10.3389/fmicb.2018.00289
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Experimental and Applied Veterinary Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
