Curcumin-chitosan nanoparticles reverse propylthiouracil-induced hypothyroidism in male rats via a thyroid peroxidase (Tpo) gene-independent mechanism
DOI:
https://doi.org/10.30539/gp3cgq97Keywords:
Curcumin nanoparticles, propylthiouracil (PTU), hypothyroidism, thyroid hormones, lipid profileAbstract
Background: Hypothyroidism is assumed to be associated with oxidative stress that can derange thyroid function as well as lipid metabolism. In the present study, the evaluation of possible protective effects of curcumin-chitosan nanoparticles (Cur-Cs-NPs) against propylthiouracil (PTU)-induced hypothyroidism in male Wistar rats is presented. Methodology: Forty male rats were divided into four groups: Control, PTU (50 mg/kg), Cur-Cs-NPs (100 μg/kg), and combined PTU + Cur-Cs-NPs. Treatments lasted for 28 days; serum TSH, T3, and T4 were measured by ELISA. Thyroid peroxidase (Tpo) gene expression was also determined in the thyroid tissue by PCR normalized to β-actin. Histopathological analysis of the thyroid tissue was also performed. Results: The PTU-treated rats showed significantly elevated TSH levels and lowered T3 and T4. PTU also raised cholesterol and lowered High Density Lipoprotein (HDL). PTU prominently downregulated the Tpo gene expression relative to the control. Treatment with Cur-Cs-NPs improved the hormone levels by declining TSH and increasing T3 and T4. Cur-Cs-NPs treatment improved significantly the levels of both cholesterol and HDL. Co-treatment with Cur-Cs-NPs did not fully restore this suppression to normal. Histopathological examination of the thyroid tissue of the PTU-treated rats confirmed the tissue damage, while the group receiving PTU followed by treatment with Cur-Cs-NPs showed improved thyroid tissue. Conclusions: Altogether, this study concluded that Cur-Cs-NPs showed antioxidant as well as protective effects on thyroid function and lipid profile in PTU-induced hypothyroidism but did not restore gene expression related to oxidative stress.
Downloads
References
Abd Al-Jaleel, R. A. (2012). Use of turmeric (Curcuma longa) on the performance and some physiological traits on the broiler diets. The Iraqi Journal of Veterinary Medicine, 36(1), 51–57. https://doi.org/10.30539/iraqijvm.v36i1.548
Abd El-Ghaffar, M. A., & Hashem, M. S. (2010). Chitosan and its amino acids condensation adducts as reactive natural polymer supports for cellulase immobilization. Carbohydrate Polymers, 81(3), 507-516.
Abdelaleem, S. E., Al-Saadi, S. F., & Hussein, H. M. (2022). Protective effects of nano-curcumin on thyroid oxidative stress and dyslipidemia in rats. Iraqi Journal of Veterinary Sciences, 36(2), 327–336.
Adibian, M., Hodaei, H., Nikpayam, O., Sohrab, G., Hekmatdoost, A., & Hedayati, M. (2019). The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Phytotherapy Research: PTR, 33(5), 1374–1383. https://doi.org/10.1002/ptr.6328
Al-Fahham, A.A. (2018). Development of new lsd formula when unequal observations numbers of observations are unequal. Open Journal of Statistics, 8(2), 258-263. https://doi.org/10.4236/ojs.2018.82016
Ali, M. R., Bayati, S. M., Mahmood, M. B., & Mohammed, A. A. (2022). In vitro study of curcumin–calcium carbonate–phosphate nanoparticles impact on goat coccidian oocysts. Iraqi Journal of Veterinary Sciences, 36(3), 809–814.
Al‑Shathir, N. M., Kudhaier, K. K., Mehdi, A. W. R., & Hussain, S. M. (2001). Serum glucose, cholesterol and total lipids levels and tissue lipid peroxidation in alloxan‑diabetic rats treated with aqueous extract of Nigella sativa seeds. Iraqi Journal of Veterinary Sciences, 14(3), 79–86.
Al-Watify, D. G. O. (2011). Oxidative stress in hypothyroidism. Journal of Babylon University/Pure Appl Sci, 19(2), 444-9.
Ameen, B. Q., & Nader, M. I. (2025). Investigating the association between vitamin D and anti-thyroid peroxidase antibodies in hypothyroid Iraqi patients. Advances in Life Sciences, 12(1), 45–52. https://www.als-journal.com/1218-25
Baker Jr, J. R., Arscott, P., & Johnson, J. (1994). An analysis of the structure and antigenicity of different forms of human thyroid peroxidase. Thyroid, 4(2), 173-178.
Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques (6th ed.). Churchill Livingstone Elsevier.
Chakraborty, S., & Bhattacharyya, R. (2017). Oxidative stress markers and hypothyroidism: A brief review. Current Research in Nutrition & Food Science, 5(1), 8–13.
Sharma, R., Mali, Y., Agrawal, Y. O., Agnihotri, V. V., & Goyal, S. N. (2025). Repurposing nano curcumin: Unveiling its therapeutic potential in diabetic nephropathy. Current Drug Targets, 26(5), 298-319. https://doi.org/10.2174/0113894501326054241126043554
Cooper, D. S. (2005). Antithyroid drugs. New England Journal of Medicine, 352(9), 905–917. https://doi.org/10.1056/NEJMra042972
Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., & Milzani, A. (2006). Biomarkers of oxidative damage in human disease. Clinical Chemistry, 52(4), 601–623. https://doi.org/10.1373/clinchem.2005.061408
Darne, P. A., Mehta, M. R., Agawane, S. B., & Prabhune, A. A. (2016). Bioavailability studies of curcumin–sophorolipid nano-conjugates in the aqueous phase: Role in the synthesis of uniform gold nanoparticles. RSC Advances, 6(72), 68504–68514. https://doi.org/10.1039/C6RA13469F
de Almeida Campos, L. A., Neto, A. F. S., Noronha, M. C. S., de Lima, M. F., Cavalcanti, I. M. F., & Santos-Magalhães, N. S. (2023). Zein nanoparticles for drug delivery: Preparation methods and biological applications. International Journal of Pharmaceutics, 635, 122754. https://doi.org/10.1016/j.ijpharm.2023.122754
Farzaei, M., Zobeiri, Mahdi., Parvizi, F., El-Senduny, Fardous F., Marmouzi, I., Coy-Barrera, E., Naseri, Rozita., Nabavi, S., Rahimi, R., & Abdollahi, M. (2018). Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7). http://doi.org/10.3390/nu10070855
Piantanida, E., Ippolito, S., Gallo, D., Masiello, E., Premoli, P., Cusini, C., ... & Tanda, M. L. (2020). The interplay between thyroid and liver: implications for clinical practice. Journal of Endocrinological Investigation, 43(7), 885-899.https://doi.org/10.1007/s40618-020-01208-6
Go, Y. M., & Jones, D. P. (2013). Thiol/disulfide redox states in signaling and sensing. Critical Reviews in Biochemistry & Molecular Biology, 48(2), 173–181. https://doi.org/10.3109/10409238.2013.764840
Goozee, Kathryn., Shah, T., Sohrabi, H., Rainey-Smith, S., Brown, B., Verdile, G., & Martins, R. (2015). Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. British Journal of Nutrition, 115, 449 – 465. http://doi.org/10.1017/S0007114515004687
Ezzat, W., Abdelbasset, W. K., Hussien, R. S., Azab, A. R., Sulieman, A., & Yousry, S. (2024). Effect of melatonin on reproductive function in propylthiouracil induced hypothyroidism in adult male rats. European Review for Medical & Pharmacological Sciences, 28(5).
Kar, A., Panda, S., Singh, M., & Biswas, S. (2022). Regulation of PTU-induced hypothyroidism in rats by caffeic acid primarily by activating thyrotropin receptors and by inhibiting oxidative stress. Phytomedicine Plus, 2(3), 100298. https://doi.org/10.1016/j.phyplu.2022.100298
Hewlings, S., & Kalman, D. (2017). Curcumin: A Review of its effects on human health. Foods, 6. http://doi.org/10.3390/foods6100092
Khuwaja, G., Moni, S. S., Alam, M. F., Makeen, H. A., Zafar, S., Ashafaq, M., ... & Shakeel Iqubal, S. M. (2024). Curcumin nanogel and its efficacy against oxidative stress and inflammation in rat models of ischemic stroke. Nanomedicine, 19(12), 1069-1085. https://doi.org/10.2217/nnm-2024-0008
Lopresti, A. (2018). The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects?. Advances in Nutrition, 9, 41-50. http://doi.org/10.1093/advances/nmx011
Maryoosh, T. M., Hassan, A. F., Ismael, S. H., Saihood, A. H., Hmood, K. S., & Al‑Shawi, N. N. (2023). Evaluation of the genoprotective effect of curcumin against methotrexate in bone marrow and spleen cells in mice. Iraqi Journal of Pharmaceutical Sciences, 32(3), 134–139. https://doi.org/10.31351/vol32iss3pp134-139
Hussin, M., Hamid, A. A., Mohamad, S., Saari, N., Bakar, F., & Dek, S. P. (2009). Modulation of lipid metabolism by Centella asiatica in oxidative stress rats. Journal of Food Science, 74(2), H72-H78. https://doi.org/10.1111/j.1750-3841.2009.01045.x
Niu, D. M., Hwang, B., Chu, Y. K., Liao, C. J., Wang, P. L., & Lin, C. Y. (2002). High prevalence of a novel mutation (2268 insT) of the thyroid peroxidase gene in Taiwanese patients with total iodide organification defect, and evidence for a founder effect. The Journal of Clinical Endocrinology & Metabolism, 87(9), 4208-4212. https://doi.org/10.1210/jc.2002-020153
Rivolta, C. M., Esperante, S. A., Gruñeiro‐Papendieck, L., Chiesa, A., Moya, C. M., Domené, S., ... & Targovnik, H. M. (2003). Five novel inactivating mutations in the thyroid peroxidase gene responsible for congenital goiter and iodide organification defect. Human Mutation, 22(3), 259-259. https://doi.org/10.1002/humu.9175
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. https://doi.org/10.1038/nprot.2008.73
Stohs, S., Chen, O., Ray, S., Ji, Jin., Bucci, L., & Preuss, H. (2020). Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A Review. Molecules, 25(6), 1397. http://doi.org/10.3390/molecules25061397
Tohamy, H. G., El Okle, O. S., Goma, A. A., Abdel-Daim, M. M., & Shukry, M. (2022). Hepatorenal protective effect of nano-curcumin against nano-copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sciences, 292, 120296. https://doi.org/10.1016/j.lfs.2021.120296
Williams, D. E., Le, S. N., Hoke, D. E., Chandler, P. G., Gora, M., Godlewska, M., ... & Buckle, A. M. (2020). Structural studies of thyroid peroxidase show the monomer interacting with autoantibodies in thyroid autoimmune disease. Endocrinology, 161(2), bqaa016. https://doi.org/10.1210/endocr/bqaa016
Wu, F., Zhou, X., Zhang, R., Pan, M., & Peng, K. L. (2012). The effects of ammonium perchlorate on thyroid homeostasis and thyroid‐specific gene expression in rat. Environmental Toxicology, 27(8), 445-452. https://doi.org/10.1002/tox.20655
Xu, Xiao-Yu., Meng, Xiao., Li, Sha., Gan, R.., Li, Ya., & Li, Huabin. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10(10). http://doi.org/10.3390/nu10101553
Yan, Y., Cai, H., & Yang, M. (2024). The application of nanotechnology for the diagnosis and treatment of endocrine disorders: A review of current trends, toxicology and future perspective. International Journal of Nanomedicine, 2024, 9921-9942. https://doi.org/10.2147/IJN.S477835
Yen, F., Wu, Tzu-hui, Tzeng, Cheng-Wei, Lin, Liang-Tzung, & Lin, Chun‐ching. (2010). Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. Journal of Agricultural & Food Chemistry, 58(12), 7376-82. http://doi.org/10.1021/jf100135h
Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., ... & Souto, E. B. (2020). Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Experimental and Applied Veterinary Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
