Molecular identification of non-albicans candida isolated from vulvovaginitis of cows
DOI:
https://doi.org/10.30539/qzvxqd11Keywords:
Non-albicans Candida , vulvovaginitis, molecular identification, biofilm formation, antifungal resistanceAbstract
Background: Vulvovaginitis in cows is an important reproductive issue that can affect fertility, cause discomfort, and lead to complications during breeding or calving. This research aims at the molecular identification of non-albicans Candida (NAC) species isolated from cows with vulvovaginitis in Baghdad City, highlighting their genetic diversity and potential clinical implications. Methodology: A total of 150 vaginal swab samples were collected from cows suffering from vaginal infection. Identification was done through the VITEK 2 system, and the molecular detection by the PCR assay targeting the internal transcribed spacer (ITS) region was also performed followed by sequencing. Then, the multiplex PCR was used to amplify two key genes associated with biofilm formation in various NAC species, these genes included Agglutinin-Like Sequence 1(ALS1) and Hyphal wall protein 1 (HWP1). Moreover, the PCR assay was used to determine the presence of anti-fungal resistance by targeting the multidrug resistance gene (MDR1). Results: Using the Vitek2 system, a yeast-like growth was observed in 17% (26/150) of the samples. Candida tropicalis was the most prevalent species (30.7%), followed by Candida krusei (19.2%). Other NAC species included C. parapsillosis (7.6%), C. utilis (2.6%), C. pelluiculosa, and C. albicans (2.6% each). PCR amplification of the ITS region followed by sequencing confirmed the genetic diversity of the isolates, with species-level identification achieved through high nucleotide sequence identity (99–100%) to GenBank references. The findings highlighted the utility of molecular techniques in distinguishing closely related species. The research also identified the presence of the biofilm-associated genes and the multidrug resistance gene in several NAC species, emphasizing their virulence and anti-fungal resistance. Biofilm formation was particularly prominent in C. tropicalis, correlating with treatment challenges. Conclusions: The findings underscore the rising prevalence and pathogenic potential of NAC species in vulvovaginitis, emphasizing the need for advanced molecular diagnostics to guide effective treatment strategies.
Downloads
References
Abastabar, M., Hosseinpoor, S., Hedayati, M. T., Shokohi, T., Valadan, R., Mirhendi, H., Mohammadi, R., Aghili, S. R., Rahimi, N., Aslani, N., Haghani, I., & Gholami, S. (2016). Hyphal wall protein 1 gene: A potential marker for the identification of different Candida species and phylogenetic analysis. Current Medical Mycology, 2(4), 1–8. https://doi.org/10.18869/acadpub.cmm.2.4.
Ajetunmobi, O. H., Badali, H., Romo, J. A., Ramage, G., & Lopez-Ribot, J. L. (2023). Antifungal therapy of Candida biofilms: Past, present and future. Biofilm, 5, 100126. https://doi.org/10.1016/j.bioflm.2023.100126
Alwan, M. J., & Aziz, M. M. (2012). Isolation and identification of Candida species from urogenital tract infections of women in Baghdad city. The Iraqi Journal of Veterinary Medicine, 36(0E), 115–119. https://doi.org/10.30539/iraqijvm.v36i0E.404
Balows, A. (2003). Manual of clinical microbiology (8th ed.; P. R. Murray, E. J. Baron, J. H. Jorgenson, M. A. Pfaller, & R. H. Yolken, Eds.). ASM Press. Diagnostic Microbiology and Infectious Disease, 47(4), 625–626. https://doi.org/10.1016/S0732-8893(03)00160-3
Boahen, A., Than, L. T. L., Loke, Y. L., & Chew, S. Y. (2022). The antibiofilm role of biotics family in vaginal fungal infections. Frontiers in Microbiology, 13, 787119. https://doi.org/10.3389/fmicb.2022.787119
Corbu, V. M., Georgescu, A.-M., Marinas, I. C., Pericleanu, R., Mogos, D. V., Dumbravă, A. Ș., Marinescu, L., Pecete, I., Vassu-Dimov, T., Czobor Barbu, I., Csutak, O., Ficai, D., & Gheorghe-Barbu, I. (2024). Phenotypic and genotypic characterization of resistance and virulence markers in Candida spp. isolated from community-acquired infections in bucharest, and the impact of agnps on the highly resistant isolates. Journal of Fungi, 10(8), 563. https://doi.org/10.3390/jof10080563
Cornet, M., Sendid, B., Fradin, C., Gaillardin, C., Poulain, D., & Nguyen, H. V. (2011). Molecular identification of closely related Candida species using two ribosomal intergenic spacer fingerprinting methods. Journal of Molecular Diagnostics, 13(1), 12–22. https://doi.org/10.1016/j.jmoldx.2010.11.014
Czechowicz, P., Nowicka, J., & Gościniak, G. (2022). Virulence factors of Candida spp. and host immune response important in the pathogenesis of vulvovaginal candidiasis. International Journal of Molecular Sciences, 23(11), 5895. https://doi.org/10.3390/ijms23115895
Deorukhkar, S. C., Saini, S., & Mathew, S. (2014a). Virulence factors contributing to pathogenicity of Candida tropicalis and its antifungal susceptibility profile. International Journal of Microbiology, 2014, 456878. https://doi.org/10.1155/2014/456878
Deorukhkar, S. C., Saini, S., & Mathew, S. (2014b). Non-albicans Candida infection: An emerging threat. Interdisciplinary Perspectives on Infectious Diseases, 2014, 615958. https://doi.org/10.1155/2014/615958
Eleutério, J. Jr., Campaner, A. B., & de Carvalho, N. S. (2023). Diagnosis and treatment of infectious vaginitis: Proposal for a new algorithm. Frontiers in Medicine (Lausanne), 10, 1040072. https://doi.org/10.3389/fmed.2023.1040072
Fujita, S. I., Senda, Y., Nakaguchi, S. & Hashimoto, T. (2001). Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. Journal of Clinical Microbiology, 39(10):3617-22. https://doi.org/10.1128/JCM.39.10.3617-3622.2001
García-Salazar, E., Acosta-Altamirano, G., Betancourt-Cisneros, P., Reyes-Montes, M. D. R., Rosas-De-Paz, E., Duarte-Escalante, E., Sánchez-Conejo, A. R., Ocharan Hernández, E., & Frías-De-León, M. G. (2022). Detection and molecular identification of eight Candida species in clinical samples by simplex PCR. Microorganisms, 10(2), 374. https://doi.org/10.3390/microorganisms10020374
Gerges, M. A., Fahmy, Y. A., Hosny, T., Gandor, N. H., Mohammed, S. Y., Mohamed, T. M. A., Abdelmoteleb, N. E. M., & Esmaeel, N. E. (2023). Biofilm formation and aspartyl proteinase activity and their association with azole resistance among Candida albicans causing vulvovaginal candidiasis, Egypt. Infection and Drug Resistance, 16, 5283–5293. https://doi.org/10.2147/IDR.S420580
Habib, K. A., Najee, E. N., & Abood, M. S. (2016). Identification of Candida species isolated from vulvovaginal candidiasis patients by Chromgen agar and PCR-RFLP method. Baghdad Science Journal, 13(2), 12. https://doi.org/10.21123/bsj.2016.13.2.0291
Hadi, H. S., & AlSultany, S. J. (2020). Isolation and identification of Candida species among renal failure Iraqi patients. Drug Invention Today, 14(6), 1182–1188.
Hoyer, L. L., Green, C. B., Oh, S. H., & Zhao, X. (2008). Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Medical Mycology, 46(1), 1–15. https://doi.org/10.1080/13693780701435317
Jahanshiri, Z., Manifar, S., & Hatami, F. (2023). Evaluation of virulence factors and azole resistance mechanisms of Candida tropicalis isolates from head and neck cancer patients with OPC. Iranian Journal of Microbiology, 15(1), 163–173. https://doi.org/10.18502/ijm.v15i1.11933
Jarallah, M. A., & Al-Haddad, Z. A. (2022). Isolation and molecular detection of Candida albicans from human and domesticated small animals in Baghdad, Iraq. Biochemical and Cellular Archives, 22(1), 2085-2092. https://connectjournals.com/03896.2022.22.2085
Jin, L., Cao, Z., Wang, Q., Wang, Y., Wang, X., Chen, H., & Wang, H. (2018). MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infectious Diseases, 18, 162. https://doi.org/10.1186/s12879-018-3082-0
Khot, P. D., & Fredricks, D. N. (2009). PCR-based diagnosis of human fungal infections. Expert Review of Anti-infective Therapy, 7(10), 1201–1221. https://doi.org/10.1586/eri.09.104
Kumar, H., Mukherjee, D., Banerjee, S., Upadhyay, P., Sharma, V., & Akilimali, A. (2023). Candida auris: An emerging multidrug-resistant fungal pathogen in the United States and the urgent call for action. Microbiology Insights, 16, 11786361231200836. https://doi.org/10.1177/11786361231200836
Larone, D. H. (1994). Medically important fungi. Revista do Instituto de Medicina Tropical de São Paulo, 36(4):362. https://doi.org/10.1590/S0036-46651994000400019
Maikan, H. K., Jabbar, S., & Al-Haishawi, H. (2022). Isolation and identification of Candida tropicalis as a cause of cutaneous candidiasis in Kalar District, Iraq. Archives of Razi Institute, 77(4), 1377–1382.
Makanjuola, O., Bongomin, F., & Fayemiwo, S. A. (2018). An update on the roles of non-albicans Candida species in vulvovaginitis. Journal of Fungi, 4(4), 122. https://doi.org/10.3390/jof4040121
Malinovská, Z., Čonková, E., & Váczi, P. (2023). Biofilm formation in medically important Candida species. Journal of Fungi, 9(10), 955. https://doi.org/10.3390/jof9100955
Mirhendi, H., Makimura, K., Khoramizadeh, M., & Yamaguchi, H. (2006). A one-enzyme PCR–RFLP assay for identification of six medically important Candida species. Nihon Ishinkin Gakkai Zasshi, 47(3), 225–229. https://doi.org/10.3314/jjmm.47.225
Mohammadi, F., Hemmat, N., Bajalan, Z., & Javadi, A. (2021). Analysis of biofilm-related genes and antifungal susceptibility pattern of vaginal Candida albicans and non-Candida albicans species. BioMed Research International, 2021, 5598907,9. https://doi.org/10.1155/2021/5598907
Mohammed, N. A., Ajah, H. A., & Abdulbaqi, N. J. (2021). Detection the prevalence of adhesins and extracellular hydrolytic enzymes genes in Candida albicans biofilm formation. Iraqi Journal of Science, 58(2C), 988–1000. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/5931/1870
Mushi, M. F., Olum, R., & Bongomin, F. (2022). Prevalence, antifungal susceptibility and etiology of vulvovaginal candidiasis in sub-Saharan Africa: A systematic review with meta-analysis and meta-regression. Medical Mycology, 60(7), myac004. https://doi.org/10.1093/mmy/myac037
Nilsson, R. H., Larsson, K. H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259–D264. https://doi.org/10.1093/nar/gky1022
Odds, F. C., & Bernaerts, R. (1994). CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. Journal of Clinical Microbiology, 32(8), 1923–1929. https://doi.org/10.1128/jcm.32.8.1923-1929.1994
Othman, K. I., Abdullah, S. M., Ali, B., & Majid, M. (2018). Isolation and identification of Candida spp. from urine and antifungal susceptibility testing. Iraqi Journal of Science, 59(4B), 1981–1988. https://doi.org/10.24996/ijs.2018.59.4B.3
Ortiz, B., Pérez-Alemán, E., Galo, C., & Fontecha, G. (2018). Molecular identification of Candida species from urinary infections in Honduras. Revista Iberoamericana de Micología, 35(2), 73–77. https://doi.org/10.1016/j.riam.2017.07.003
Pham, D., Sivalingam, V., Tang, H. M., Montgomery, J. M., Chen, S. C., & Halliday, C. L. (2024). Molecular diagnostics for invasive fungal diseases: current and future approaches. Journal of Fungi, 10(7), 447. https://doi.org/10.3390/jof10070447
Qi, G., Hao, L., Xin, T., Gan, Y., Lou, Q., Xu, W., & Song, J. (2024). Analysis of whole-genome facilitates rapid and precise identification of fungal species. Frontiers in Microbiology, 15, 1336143. https://doi.org/10.3389/fmicb.2024.1336143
Risan, M. H. (2022). Molecular identification of yeast Candida glabrata from candidemia patients in Iraq. Iraqi Journal of Science, 57(2A), 808–813.
Rodrigues, C. F., Silva, S., & Henriques, M. (2014). Candida glabrata: A review of its features and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 33(5), 673–688. https://doi.org/10.1007/s10096-013-2009-3
Roudbarmohammadi, S., Roudbary, M., Bakhshi, B., Katiraee, F., Mohammadi, R., & Falahati, M. (2016). ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Advances in Biomedical Research, 5, 105. https://doi.org/10.4103/2277-9175.183666
Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., & Mendes Giannini, M. J. S. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, 62(Pt 1), 10–24. https://doi.org/10.1099/jmm.0.045054-0
Satala, D., Gonzalez-Gonzalez, M., Smolarz, M., Surowiec, M., Kulig, K., Wronowska, E., Zawrotniak, M., Kozik, A., Rapala-Kozik, M., & Karkowska-Kuleta, J. (2021). The role of Candida albicans virulence factors in the formation of multispecies biofilms with bacterial periodontal pathogens. Frontiers in Cellular and Infection Microbiology, 11, 765942. https://doi.org/10.3389/fcimb.2021.765942
Shirvani, F., & Fattahi, M. (2021). Molecular identification of Candida species isolated from candiduria and its risk factors in neonates and children. Current Medical Mycology, 7(3), 9–12. https://doi.org/10.18502/cmm.7.3.7799
Silva, S., Rodrigues, C. F., Araújo, D., Rodrigues, M. E., & Henriques, M. (2017). Candida species biofilms’ antifungal resistance. Journal of Fungi, 3(1), 8. https://doi.org/10.3390/jof3010008
Stelzner, A. (1990). Review of the book Candida and Candidosis: A review and bibliography (2nd ed.), by F. C. Odds. Journal of Basic Microbiology, 30(5), 367. https://doi.org/10.1002/jobm.3620300522
Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans the virulence factors and clinical manifestations of infection. Journal of Fungi, 7(2), 79. https://doi.org/10.3390/jof7020079
Tsui, C. K., Woodhall, J., Chen, W., Lévesque, C. A., Lau, A., Schoen, C. D., Baschien, C., Najafzadeh, M. J., & de Hoog, G. S (2011). Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus, 2(2), 177–189. https://doi.org/10.5598/imafungus.2011.02.02.09
White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p. 315–322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, San Diego, Calif.
Williams, D. W., Wilson, M. J., Lewis, M. A. O., & Potts, A. J. (1995). Identification of Candida species by PCR and restriction fragment length polymorphism analysis of intergenic spacer regions of ribosomal DNA. Journal of Clinical Microbiology, 33(9):2476-2479. https://doi.org/10.1128/jcm.33.9.2476-2479.1995
Willems, H. M. E., Ahmed, S. S., Liu, J., Xu, Z., & Peters, B. M. (2020). Vulvovaginal candidiasis: A current understanding and burning questions. Journal of Fungi, 6(1), 27. https://doi.org/10.3390/jof6010027
Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases, 4(6), 337–348. https://doi.org/10.1016/S1473-3099(04)01044-8.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Experimental and Applied Veterinary Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
