Antibiotic susceptibility and molecular identification of Pseudomonas aeruginosa isolated from dog and cat wound samples
DOI:
https://doi.org/10.30539/fw39ae05Keywords:
Pseudomonas aeruginosa, antimicrobial resistance, companion animals, mexA and mexB genes, biofilm-producing isolatesAbstract
Background: Pseudomonas aeruginosa is an opportunistic pathogen frequently associated with wound infection in both humans and animals. Its intrinsic and acquired resistance to antibiotics poses a challenge in veterinary medicine. The emergence of multidrug-resistant strains in both pet and stray dogs and cats raises concerns regarding public health and treatment efficacy. This study aimed to compare antimicrobial resistance against P. aeruginosa isolated from wounds of pet and stray dogs and cats. Methodology: The VITEK 2 technique was used to identify these isolates, which were subsequently validated through molecular methods. Moreover, all isolates were tested for their antibiotic susceptibility using the disk diffusion method and their ability to form biofilm by the tube method. Results: P. aeruginosa was isolated from 3 of 42 cats and 2 of 17 dogs. All isolates exhibited the presence of the mexA and mexB genes, indicating the presence of specific antibiotic resistance mechanisms. Bacterial susceptibility to antibiotics revealed that the cat’s isolates showed some degree of sensitivity, ranging from 66% to 100%, to all tested antibiotics except ciprofloxacin, which showed 33% sensitivity. In dogs, the isolates showed 100% sensitivity to all listed antibiotics except ticarcillin-clavulanic acid, which showed intermediate resistance. Conclusions: The overall results of this study highlighted the clinical significance of P. aeruginosa in veterinary settings and illustrated the varying patterns of antibiotic susceptibility in animal hosts that were less exposed to antibiotics in comparison to human populations.
Downloads
References
Ahmed, I. A., Aljondi, A. I., Alabed, A. A. A., Al-Mahdi, A. Y., & Abdsalam, R. (2021). Isolation, screening and antibiotic sensitivity of Pseudomonas species from Kelana Jaya lake soil in Selangor Malaysia. Baghdad Science Journal, 18(3), 455. https://doi.org/10.21123/bsj.2021.18.3.0455
Al-Draghi, W. A. (2024). Molecular Detection of MexA, MexB Efflux Pump Genes and MexR Regulatory Gene in Clinical Isolates of Pseudomonas aeruginosa. Iraqi Journal of Biotechnology, 23(2).
Al-Mashhadani, Y. B. K., & Zghair, Z. R. (2021). Isolation of Some Pathogenic Zoonoses Bacteria from Humans Dog-Bite Wounds and from Oral Cavity of Dogs. Annals of RSCB, 25(4), 21206–21212.
Al-Mohammed, T. A., & Mahmood, H. M. (2024). Carbapenem resistance related with biofilm formation and pilin genes in clinical Pseudomonas aeruginosa isolates. Iraqi Journal of Pharmaceutical Sciences, 33(1), 72-78. https://doi.org/10.31351/vol33iss1pp72-78
Al-Taee, H. S. R., Al-Samarraae, I. A. A., & Al-Ahmed, H. I. (2019). Antibiotic susceptibility and molecular detection of Pseudomonas aeruginosa isolated from bovine mastitis. The Iraqi Journal of Veterinary Medicine, 43(2), 77-85. https://doi.org/10.30539/iraqijvm.v43i2.536
Araos, R., & D’Agata, E. (2015). Pseudomonas aeruginosa and other Pseudomonas species. In Mandell, Douglas, and Bennett's principles and practice of infectious diseases (pp. 2518-2531). WB Saunders.
Bader, S. F., Jasim, A. S., & Alsaad, K. M. (2024). Molecular detection and phylogenetic tree assay of Pseudomonus aeruginosa isolated from otitis cases of cats and humans, Iraq. SEEJPH, 2024. https://doi.org/10.70135/seejph.vi.1426
Balakrishnan, V. S. (2022). WHO's first global infection prevention and control report. The Lancet Infectious Diseases, 22(8), 1122. https://doi.org/10.1016/S1473-3099(22)00459-5
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
Cavallo, I., Sivori, F., Mastrofrancesco, A., Abril, E., Pontone, M., Di Domenico, E. G., & Pimpinelli, F. (2024). Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches. Biology, 13(2), 109. https://doi.org/10.3390/biology13020109
Chawnan, N., Lampang, K. N., Mektrirat, R., Awaiwanont, N., & Thongkorn, K. (2021). Cultivation of bacterial pathogens and antimicrobial resistance in canine periapical tooth abscesses. Veterinary Integrative Sciences, 19(3), 513-524. https://doi.org/10.52113/1/1/2022-15-28
Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology, 22(6), 996-1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985
CLSI. (2024). Performance Standards for Antimicrobial Susceptibility Testing (34th ed.). Clinical and Laboratory Standards Institute.
Collee, J., Dugmid, J. P., Fraser, A., & Marmion, B. (1996). Practical medical microbiology, Mackie and Mc Cartney. Pearson professional limited. 14th ed.
da Silva, L. C. A., do Nascimento Pessoa, D. A., Maia, L. Â., Matos, R. A. T., & da Silva Macêdo, M. M. (2016). Systemic infection by Pseudomonas aeruginosa in a dog. Acta Scientiae Veterinariae, 44, 5-5. https://doi.org/10.22456/1679-9216.83201
de Sousa, T., Garcês, A., Silva, A., Lopes, R., Alegria, N., Hébraud, M., Igrejas, G., & Poeta, P. (2023). The impact of the virulence of Pseudomonas aeruginosa isolated from dogs. Veterinary Sciences, 10(5), 343. https://doi.org/10.3390/vetsci10050343
Dégi, J., Moțco, O.-A., Dégi, D. M., Suici, T., Mareș, M., Imre, K., & Cristina, R. T. (2021). Antibiotic susceptibility profile of Pseudomonas aeruginosa canine isolates from a multicentric study in Romania. Antibiotics, 10(7), 846. https://doi.org/10.3390/antibiotics10070846
Eshra, K.A., Shalaby, M.M., 2017. Efflux Pump Inhibition Effect of Curcumin and Phenylalanine Arginyl β- Naphthylamide (PAβN) against Multidrug Resistant Pseudomonas Aeruginosa Isolated from Burn Infections in Tanta University Hospitals. The Egyptian Journal of Medical Microbiology, 26, 113–119. https://doi.org/10.12816/0046279
Esmond, D. (2021). Assesment Of Antibiotic Resistant Gene Expression In Clinical Isolates Of Pseudomonas aeruginosa. MSc Biology Thesis. University of Texas at Tyler. https://scholarworks.uttyler.edu/biology_grad/68/
Gawad, M. A., & Gharbi, W. A. (2022). Molecular Detection of oprI and oprL Virulence Genes of Pseudomonas aeruginosa Isolated from Burns and Wounds. Iraqi Journal of Biotechnology, 21(2). https://doi.org/10.52113/1/1/2022-15-28
George, D., & Mallery, P. (n.d.). IBM SPSS statistics 26 step by step: A simple guide and reference: Routledge; 2019. https://doi.org/10.4324/9780429056765-3
Hakim, A. S., Dorgham, S. M., Abuelhag, H. A., Sadek, E. G., Dapgh, A. N., Youssif, N. H., & Fouad, E. A. (2024). Isolation and identification of Pseudomonas aeruginosa obtained from dogs and cats in Great Cairo regarding status of phenotypic antimicrobial resistance pattern. Egyptian Pharmaceutical Journal, 23(3), 525-531. https://doi.org/10.4103/epj.epj_340_23
Hamad, M. A. B., & Abdulgafor, A. B. (2023). Bacterial and molecular detection of Pseudomonas aeruginosa in feline otitis externa in Baghdad city. Journal of Survey in Fisheries Sciences, 10(3S), 728–736.
Hayashi, W., Izumi, K., Yoshida, S., Takizawa, S., Sakaguchi, K., Iyori, K., Minoshima, K., Takano, S., Kitagawa, M., & Nagano, Y. (2021). Antimicrobial resistance and type III secretion system virulotypes of Pseudomonas aeruginosa isolates from dogs and cats in primary veterinary hospitals in Japan: identification of the international high-risk clone sequence type 235. Microbiology Spectrum, 9(2), e00408-21. https://doi.org/10.1128/Spectrum.00408-21
Hillier, A., Alcorn, J. R., Cole, L. K., & Kowalski, J. J. (2006). Pyoderma caused by Pseudomonas aeruginosa infection in dogs: 20 cases. Veterinary Dermatology, 17(6), 432-439. https://doi.org/10.1111/j.1365-3164.2006.00550.x
Jangsangthong, A., Lugsomya, K., Apiratwarrasakul, S., & Phumthanakorn, N. (2024). Distribution of sequence types and antimicrobial resistance of clinical Pseudomonas aeruginosa isolates from dogs and cats visiting a veterinary teaching hospital in Thailand. BMC Veterinary Research, 20(1), 234. https://doi.org/10.1186/s12917-024-04098-5
Jawad, L. Q., & Rasheed, H. (2022). Isolation and Purification of anticancer protein Exotxin A from Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1), 48-56. https://doi.org/10.36103/ijas.v53i1.1507
Kello, E., Greenberg, R., Li, W., Polansky, S., Maldonado, R., Peter, Y., & Basu, P. (2023). The Effect of Antibiotic Treatment and Gene Expression of Mex B Efflux Transporters on the Resistance in Pseudomonas Aeruginosa Biofilms. Applied Microbiology, 3(3), 709–721. https://doi.org/10.3390/applmicrobiol3030049
Khames, S. A.-S. K., & Ahmed, S. T. (2024). Effect of Chemically synthesis compared to biosynthesized zinc oxide nanoparticles using extract of Vitex agnus on the expression of MexAB-OprM efflux pump genes of Multi-Drug Resistance Pseudomonas aeruginosa. Baghdad Science Journal, 21(12 (Suppl.), 4050-4066. https://doi.org/10.21123/bsj.2024.10976
Kishk, R. M., Abdalla, M. O., Hashish, A. A., Nemr, N. A., El Nahhas, N., Alkahtani, S., Abdel-Daim, M. M., & Kishk, S. M. (2020). Efflux MexAB-mediated resistance in P. aeruginosa isolated from patients with healthcare associated infections. Pathogens, 9(6), 471. https://doi.org/10.3390/pathogens9060471
Levinson, W. (2016) Review of Medical Microbiology and Immunology. 14th ed. McGraw-Hill Education, Inc, 821.
Liu, H. Y., Prentice, E. L., & Webber, M. A. (2024). Mechanisms of antimicrobial resistance in biofilms. Npj Antimicrobials and Resistance, 2(1), 27. https://doi.org/10.1038/s44259-024-00046-3
Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F., & Faoro, H. (2022). Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 23(24), 15779. https://doi.org/10.3390/ijms232415779
Mahmood, A. N., & Aljobori, A. H. (2015). Isolation and identification of Pseudomonas aeruginosa from infected sheep and detection of phosolipase C (lecithinase). The Iraqi Journal of Veterinary Medicine, 39, 28-32. https://doi.org/10.30539/iraqijvm.v39i1.193
Mullis, K. B., & Faloona, F. A. (1987). [21] Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In Methods in enzymology (Vol. 155, pp. 335-350). Academic Press. https://doi.org/10.1016/0076-6879(87)55023-6
Nocera, F.P., Ambrosio, M., Fiorito, F., Cortese, L., De Martino, L. (2021). On Gram-positive- and Gram-negative-bacteria-associated canine and feline skin infections: A 4-Year retrospective study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals, 11, 1603. https://doi.org/10.3390/ani11061603
Otu, J. U., Edim, S. N., Ugor, S. O., & Obiaje, J. U. (2023). 16S Ribosomal Gene Sequencing, Phylogeny and Multidrug Resistance of Pseudomonas aeruginosa Isolated from Clinical Samples at a Tertiary Healthcare Facility in Nigeria. European Journal of Medical and Health Research, 1(3), 87–97. https://doi.org/10.59324/ejmhr.2023.1(3).16
Pesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. K., & Gandham, R. K. (2019). MexAB-OprM efflux pump of Pseudomonas aeruginosa offers resistance to carvacrol: A herbal antimicrobial agent. Frontiers in Microbiology, 10, 2664. https://doi.org/10.3389/fmicb.2019.02664
Pincus, D. H. (2006). Microbial identification using the bioMérieux Vitek® 2 system. Encyclopedia of Rapid Microbiological Methods. Bethesda, MD: Parenteral Drug Association, 2006, 1-32. https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf
Poole, K. (2005). Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 56(1), 20–51. https://doi.org/10.1093/jac/dki171
Prado, M. R., Rocha, M. F., Brito, É. H., Girão, M. D., Monteiro, A. J., Teixeira, M. F., & Sidrim, J. J. (2005). Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceará, Brazil. Veterinary Ophthalmology, 8(1), 33-37. https://doi.org/10.1111/j.1463-5224.2005.04061.x
Ramanarayana, P., Kumari, G. D., Kumar, P. A., & Kiranmayi, B. (2022). Isolation and identification of P. aeruginosa from clinical samples of dogs. Indian Journal of Animimal Health, 61(2), 357–362. https://doi.org/10.36062/ijah.2022.10022
Rattanachak, N., Weawsiangsang, S., Baldock, R. A., Jaifoo, T., Jongjitvimol, T., & Jongjitwimol, J. (2023). A Novel and Quantitative Detection Assay (effluxR) for Identifying Efflux-Associated Resistance Genes Using Multiplex Digital PCR in Clinical Isolates of Pseudomonas aeruginosa. Methods and Protocols, 6(5), 96. https://doi.org/10.3390/mps6050096
Riggio, M. P., Lennon, A., Taylor, D. J., & Bennett, D. (2011). Molecular identification of bacteria associated with canine periodontal disease. Veterinary Microbiology, 150(3-4), 394-400. https://doi.org/10.1016/j.vetmic.2011.03.001
Robinson, V. H., Paterson, S., Bennett, C., & Steen, S. I. (2019). Biofilm production of Pseudomonas spp. isolates from canine otitis in three different enrichment broths. Veterinary Dermatology, 30(3), 218-e67. https://doi.org/10.1111/vde.12738
Rubin, J. E., & Pitout, J. D. D. (2014). Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Veterinary Microbiology, 170(1–2), 10–18. https://doi.org/10.1016/j.vetmic.2014.01.017
Sarhan, S. R. (2017). Activity of isolated specific bacteriophage in treatment of chronic osteomyelitis induced by multiple drug resistance Pseudomonas aeruginosa in rabbits. The Iraqi Journal of Veterinary Medicine, 41(2), 146-156. https://doi.org/10.30539/iraqijvm.v41i2.64
Sharma, D., Pakravan, N., Pritchard, J. C., Hartmann, F. A., & Young, K. M. (2019). Mucoid Pseudomonas aeruginosa infection in a cat with severe chronic rhinosinusitis. Veterinary Clinical Pathology, 48(2), 300-304. https://doi.org/10.1111/vcp.12749
Tille, P. M. (2013). Bailey & Scott's Diagnostic Microbiology-E-Book: Bailey & Scott's Diagnostic Microbiology-E-Book. Elsevier Health Sciences.
Willey, J. M., Sherwood, L., & Woolverton, C. J. (2011). Prescott’s Microbiology (7th ed.). McGraw-Hill, New York.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Experimental and Applied Veterinary Research Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.
