Antibiotic susceptibility and molecular identification of Pseudomonas aeruginosa isolated from dog and cat wound samples

Authors

  • Aws AL-Jabbari Zoonotic Diseases Unit, Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Iraq Author

DOI:

https://doi.org/10.30539/fw39ae05

Keywords:

Pseudomonas aeruginosa, antimicrobial resistance, companion animals‎, mexA and mexB genes, biofilm-producing isolates

Abstract

Background: Pseudomonas aeruginosa is an opportunistic pathogen frequently associated with wound infection in both humans and animals. Its intrinsic and acquired resistance to antibiotics poses a challenge in veterinary medicine. The emergence of multidrug-resistant strains in both pet and stray dogs and cats raises concerns regarding public health and treatment efficacy. This study aimed to compare antimicrobial resistance against P. aeruginosa isolated from wounds of pet and stray dogs and cats. Methodology: The VITEK 2 technique was used to identify these isolates, which were subsequently validated through molecular methods. Moreover, all isolates were tested for their antibiotic susceptibility using the disk diffusion method and their ability to form biofilm by the tube method. Results: P. aeruginosa was isolated from 3 of 42 cats and 2 of 17 dogs. All isolates exhibited the presence of the mexA and mexB genes, indicating the presence of specific antibiotic resistance mechanisms. Bacterial susceptibility to antibiotics revealed that the cat’s isolates showed some degree of sensitivity, ranging from 66% to 100%, to all tested antibiotics except ciprofloxacin, which showed 33% sensitivity. In dogs, the isolates showed 100% sensitivity to all listed antibiotics except ticarcillin-clavulanic acid, which showed intermediate resistance. Conclusions: The overall results of this study highlighted the clinical significance of P. aeruginosa in veterinary settings and illustrated the varying patterns of antibiotic susceptibility in animal hosts that were less exposed to antibiotics in comparison to human populations.

Downloads

Download data is not yet available.

References

Ahmed, I. A., Aljondi, A. I., Alabed, A. A. A., Al-Mahdi, A. Y., & Abdsalam, R. (2021). ‎Isolation, screening and ‎antibiotic sensitivity of Pseudomonas species from Kelana Jaya lake ‎soil in Selangor Malaysia. ‎Baghdad Science Journal, 18(3), 455. ‎https://doi.org/10.21123/bsj.2021.18.3.0455‎

Al-Draghi, W. A. (2024). Molecular Detection of MexA, MexB Efflux Pump Genes and MexR ‎Regulatory Gene in ‎Clinical Isolates of Pseudomonas aeruginosa. Iraqi Journal of ‎Biotechnology, 23(2).‎

Al-Mashhadani, Y. B. K., & Zghair, Z. R. (2021). Isolation of Some Pathogenic Zoonoses ‎Bacteria from Humans ‎Dog-Bite Wounds and from Oral Cavity of Dogs. Annals of RSCB, ‎‎25(4), 21206–21212.‎

Al-Mohammed, T. A., & Mahmood, H. M. (2024). Carbapenem resistance related with biofilm ‎formation and ‎pilin genes in clinical Pseudomonas aeruginosa isolates. Iraqi Journal of ‎Pharmaceutical Sciences, ‎‎33(1), 72-78. https://doi.org/10.31351/vol33iss1pp72-78‎‏

Al-Taee, H. S. R., Al-Samarraae, I. A. A., & Al-Ahmed, H. I. (2019). Antibiotic susceptibility ‎and molecular ‎detection of Pseudomonas aeruginosa isolated from bovine mastitis. The Iraqi ‎Journal of Veterinary ‎Medicine, 43(2), 77-85. https://doi.org/10.30539/iraqijvm.v43i2.536

Araos, R., & D’Agata, E. (2015). Pseudomonas aeruginosa and other Pseudomonas species. In ‎Mandell, Douglas, ‎and Bennett's principles and practice of infectious diseases (pp. 2518-‎‎2531). WB Saunders.‎

Bader, S. F., Jasim, A. S., & Alsaad, K. M. (2024). Molecular detection and phylogenetic tree ‎assay of ‎Pseudomonus aeruginosa isolated from otitis cases of cats and humans, Iraq. SEEJPH, 2024. ‎‎https://doi.org/10.70135/seejph.vi.1426

Balakrishnan, V. S. (2022). WHO's first global infection prevention and control report. The ‎Lancet Infectious ‎Diseases, 22(8), 1122. https://doi.org/10.1016/S1473-3099(22)00459-‎‏5

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility ‎testing by a ‎standardized single disk method. American Journal of Clinical Pathology, ‎‎45(4_ts), 493–496. ‎https://doi.org/10.1093/ajcp/45.4_ts.493‎‏

Cavallo, I., Sivori, F., Mastrofrancesco, A., Abril, E., Pontone, M., Di Domenico, E. G., & ‎Pimpinelli, F. (2024). ‎Bacterial Biofilm in Chronic Wounds and Possible Therapeutic ‎Approaches. Biology, 13(2), 109. ‎https://doi.org/10.3390/biology13020109‎

Chawnan, N., Lampang, K. N., Mektrirat, R., Awaiwanont, N., & Thongkorn, K. (2021). ‎Cultivation of bacterial ‎pathogens and antimicrobial resistance in canine periapical tooth ‎abscesses. Veterinary Integrative ‎Sciences, 19(3), 513-524.‎‏‎ https://doi.org/10.52113/1/1/2022-‎‎15-28‎

Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. ‎M., & Beachey, E. H. ‎‎(1985). Adherence of coagulase-negative staphylococci to plastic tissue ‎culture plates: a quantitative ‎model for the adherence of staphylococci to medical ‎devices. Journal of Clinical Microbiology, 22(6), ‎‎996-1006.‎‏‎ ‎https://doi.org/10.1128/jcm.22.6.996-1006.1985‎

CLSI. (2024). Performance Standards for Antimicrobial Susceptibility Testing (34th ed.). Clinical ‎and ‎Laboratory Standards Institute.‎

Collee, J., Dugmid, J. P., Fraser, A., & Marmion, B. (1996). Practical medical microbiology, ‎Mackie and Mc ‎Cartney. Pearson professional limited. 14th ed.‎

da Silva, L. C. A., do Nascimento Pessoa, D. A., Maia, L. Â., Matos, R. A. T., & da Silva ‎Macêdo, M. M. (2016). ‎Systemic infection by Pseudomonas aeruginosa in a dog. Acta ‎Scientiae Veterinariae, 44, 5-5.‎‏‎ ‎https://doi.org/10.22456/1679-9216.83201

de Sousa, T., Garcês, A., Silva, A., Lopes, R., Alegria, N., Hébraud, M., Igrejas, G., & Poeta, P. ‎‎(2023). The impact ‎of the virulence of Pseudomonas aeruginosa isolated from dogs. ‎Veterinary Sciences, 10(5), 343. ‎https://doi.org/10.3390/vetsci10050343

Dégi, J., Moțco, O.-A., Dégi, D. M., Suici, T., Mareș, M., Imre, K., & Cristina, R. T. (2021). ‎Antibiotic ‎susceptibility profile of Pseudomonas aeruginosa canine isolates from a ‎multicentric study in Romania. ‎Antibiotics, 10(7), 846. ‎https://doi.org/10.3390/antibiotics10070846

Eshra, K.A., Shalaby, M.M., 2017. Efflux Pump Inhibition Effect of Curcumin and ‎Phenylalanine Arginyl β- ‎Naphthylamide (PAβN) against Multidrug Resistant Pseudomonas ‎Aeruginosa Isolated from Burn ‎Infections in Tanta University Hospitals. The Egyptian ‎Journal of Medical Microbiology, 26, 113–119. ‎https://doi.org/10.12816/0046279‎‏

Esmond, D. (2021). Assesment Of Antibiotic Resistant Gene Expression In Clinical Isolates Of ‎Pseudomonas ‎aeruginosa. MSc Biology Thesis. University of Texas at Tyler. ‎‎‎https://scholarworks.uttyler.edu/biology_grad/68/‎

Gawad, M. A., & Gharbi, W. A. (2022). Molecular Detection of oprI and oprL Virulence Genes ‎of Pseudomonas ‎aeruginosa Isolated from Burns and Wounds. Iraqi Journal of ‎Biotechnology, 21(2). ‎https://doi.org/10.52113/1/1/2022-15-28‎

George, D., & Mallery, P. (n.d.). IBM SPSS statistics 26 step by step: A simple guide and ‎reference: Routledge; ‎‎2019. https://doi.org/10.4324/9780429056765-3‎‏

Hakim, A. S., Dorgham, S. M., Abuelhag, H. A., Sadek, E. G., Dapgh, A. N., Youssif, N. H., & ‎Fouad, E. A. (2024). ‎Isolation and identification of Pseudomonas aeruginosa obtained from ‎dogs and cats in Great Cairo ‎regarding status of phenotypic antimicrobial resistance pattern. ‎Egyptian Pharmaceutical Journal, ‎‎23(3), 525-531. https://doi.org/10.4103/epj.epj_340_23‎

Hamad, M. A. B., & Abdulgafor, A. B. (2023). Bacterial and molecular detection of ‎Pseudomonas aeruginosa in ‎feline otitis externa in Baghdad city. Journal of Survey in ‎Fisheries Sciences, 10(3S), 728–736.‎

Hayashi, W., Izumi, K., Yoshida, S., Takizawa, S., Sakaguchi, K., Iyori, K., Minoshima, K., ‎Takano, S., Kitagawa, ‎M., & Nagano, Y. (2021). Antimicrobial resistance and type III ‎secretion system virulotypes of ‎Pseudomonas aeruginosa isolates from dogs and cats in ‎primary veterinary hospitals in Japan: ‎identification of the international high-risk clone ‎sequence type 235. Microbiology Spectrum, 9(2), ‎e00408-21. ‎https://doi.org/10.1128/Spectrum.00408-21‎

Hillier, A., Alcorn, J. R., Cole, L. K., & Kowalski, J. J. (2006). Pyoderma caused by ‎Pseudomonas aeruginosa ‎infection in dogs: 20 cases. Veterinary Dermatology, 17(6), 432-‎‎439.‎‏‎ https://doi.org/10.1111/j.1365-‎‎3164.2006.00550.x

Jangsangthong, A., Lugsomya, K., Apiratwarrasakul, S., & Phumthanakorn, N. (2024). ‎Distribution of sequence ‎types and antimicrobial resistance of clinical Pseudomonas ‎aeruginosa isolates from dogs and cats ‎visiting a veterinary teaching hospital in Thailand. ‎BMC Veterinary Research, 20(1), 234. ‎https://doi.org/10.1186/s12917-024-04098-5‎‏

Jawad, L. Q., & Rasheed, H. (2022). Isolation and Purification of anticancer protein Exotxin A ‎from ‎Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1), 48-56. ‎https://doi.org/10.36103/ijas.v53i1.1507‎

Kello, E., Greenberg, R., Li, W., Polansky, S., Maldonado, R., Peter, Y., & Basu, P. (2023). The ‎Effect of ‎Antibiotic Treatment and Gene Expression of Mex B Efflux Transporters on the ‎Resistance in ‎Pseudomonas Aeruginosa Biofilms. Applied Microbiology, 3(3), 709–721. ‎‎https://doi.org/10.3390/applmicrobiol3030049‎

Khames, S. A.-S. K., & Ahmed, S. T. (2024). Effect of Chemically synthesis compared to ‎biosynthesized zinc ‎oxide nanoparticles using extract of Vitex agnus on the expression of ‎MexA‎B-OprM efflux pump genes ‎of Multi-Drug Resistance Pseudomonas aeruginosa. ‎Baghdad Science Journal, 21(12 (Suppl.), 4050-‎‎4066. ‎https://doi.org/10.21123/bsj.2024.10976‎

Kishk, R. M., Abdalla, M. O., Hashish, A. A., Nemr, N. A., El Nahhas, N., Alkahtani, S., Abdel-‎Daim, M. M., & ‎Kishk, S. M. (2020). Efflux MexAB-mediated resistance in P. aeruginosa ‎isolated from patients with ‎healthcare associated infections. Pathogens, 9(6), 471. ‎https://doi.org/10.3390/pathogens9060471‎

Levinson, W. (2016) Review of Medical Microbiology and Immunology. 14th ed. McGraw-Hill ‎Education, Inc, ‎‎821.‎

Liu, H. Y., Prentice, E. L., & Webber, M. A. (2024). Mechanisms of antimicrobial resistance in ‎biofilms. Npj ‎Antimicrobials and Resistance, 2(1), 27. https://doi.org/10.1038/s44259-024-‎‎00046-3‎

Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F., & Faoro, H. (2022). Role of efflux ‎pumps on ‎antimicrobial resistance in Pseudomonas aeruginosa. International Journal of ‎Molecular Sciences, ‎‎23(24), 15779. https://doi.org/10.3390/ijms232415779‎‏

Mahmood, A. N., & Aljobori, A. H. (2015). Isolation and identification of Pseudomonas ‎aeruginosa from infected ‎sheep and detection of phosolipase C (lecithinase). The Iraqi ‎Journal of Veterinary Medicine, 39, 28-‎‎32. https://doi.org/10.30539/iraqijvm.v39i1.193‎

Mullis, K. B., & Faloona, F. A. (1987). [21] Specific synthesis of DNA in vitro via a polymerase-‎catalyzed chain ‎reaction. In Methods in enzymology (Vol. 155, pp. 335-350). Academic Press.‎‏‎ ‎‎https://doi.org/10.1016/0076-6879(87)55023-6‎

Nocera, F.P., Ambrosio, M., Fiorito, F., Cortese, L., De Martino, L. (2021). On Gram-positive- and ‎Gram-negative-‎bacteria-associated canine and feline skin infections: A 4-Year ‎retrospective study of the University ‎Veterinary Microbiology Diagnostic Laboratory of ‎Naples, Italy. Animals, 11, 1603. ‎https://doi.org/10.3390/ani11061603

Otu, J. U., Edim, S. N., Ugor, S. O., & Obiaje, J. U. (2023). 16S Ribosomal Gene Sequencing, ‎Phylogeny and ‎Multidrug Resistance of Pseudomonas aeruginosa Isolated from Clinical ‎Samples at a Tertiary ‎Healthcare Facility in Nigeria. European Journal of Medical and Health ‎Research, 1(3), 87–97. ‎https://doi.org/10.59324/ejmhr.2023.1(3).16‎

Pesingi, P. V., Singh, B. R., Pesingi, P. K., Bhardwaj, M., Singh, S. V., Kumawat, M., Sinha, D. ‎K., & Gandham, R. ‎K. (2019). MexAB-OprM efflux pump of Pseudomonas aeruginosa ‎offers resistance to carvacrol: A ‎herbal antimicrobial agent. Frontiers in Microbiology, 10, ‎‎2664. ‎https://doi.org/10.3389/fmicb.2019.02664‎‏

Pincus, D. H. (2006). Microbial identification using the bioMérieux Vitek® 2 system. ‎Encyclopedia of Rapid ‎Microbiological Methods. Bethesda, MD: Parenteral Drug ‎Association, 2006, 1-32. ‎https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf

Poole, K. (2005). Efflux-mediated antimicrobial resistance. Journal of Antimicrobial ‎Chemotherapy, 56(1), 20–‎‎51. https://doi.org/10.1093/jac/dki171

Prado, M. R., Rocha, M. F., Brito, É. H., Girão, M. D., Monteiro, A. J., Teixeira, M. F., & ‎Sidrim, J. J. (2005). ‎Survey of bacterial microorganisms in the conjunctival sac of clinically ‎normal dogs and dogs with ‎ulcerative keratitis in Fortaleza, Ceará, Brazil. Veterinary ‎Ophthalmology, 8(1), 33-37.‎‏‎ ‎https://doi.org/10.1111/j.1463-5224.2005.04061.x

Ramanarayana, P., Kumari, G. D., Kumar, P. A., & Kiranmayi, B. (2022). Isolation and ‎identification of P. ‎aeruginosa from clinical samples of dogs. Indian Journal of Animimal Health, 61(2), ‎‎357–362. ‎https://doi.org/10.36062/ijah.2022.10022

Rattanachak, N., Weawsiangsang, S., Baldock, R. A., Jaifoo, T., Jongjitvimol, T., & ‎Jongjitwimol, J. (2023). A ‎Novel and Quantitative Detection Assay (effluxR) for Identifying ‎Efflux-Associated Resistance Genes ‎Using Multiplex Digital PCR in Clinical Isolates of ‎Pseudomonas aeruginosa. Methods and Protocols, ‎‎6(5), 96. ‎https://doi.org/10.3390/mps6050096

Riggio, M. P., Lennon, A., Taylor, D. J., & Bennett, D. (2011). Molecular identification of ‎bacteria associated ‎with canine periodontal disease. Veterinary Microbiology, 150(3-4), 394-‎‎400.‎‏‎ ‎https://doi.org/10.1016/j.vetmic.2011.03.001‎

Robinson, V. H., Paterson, S., Bennett, C., & Steen, S. I. (2019). Biofilm production of ‎Pseudomonas spp. isolates ‎from canine otitis in three different enrichment broths. Veterinary ‎Dermatology, 30(3), 218-e67.‎‏‎ ‎https://doi.org/10.1111/vde.12738

Rubin, J. E., & Pitout, J. D. D. (2014). Extended-spectrum β-lactamase, carbapenemase and ‎AmpC producing ‎Enterobacteriaceae in companion animals. Veterinary Microbiology, 170(1–‎‎2), 10–18. ‎https://doi.org/10.1016/j.vetmic.2014.01.017

Sarhan, S. R. (2017). Activity of isolated specific bacteriophage in treatment of chronic ‎osteomyelitis induced by ‎multiple drug resistance Pseudomonas aeruginosa in rabbits. The ‎Iraqi Journal of Veterinary Medicine, ‎‎41(2), 146-156. ‎https://doi.org/10.30539/iraqijvm.v41i2.64‎‏

Sharma, D., Pakravan, N., Pritchard, J. C., Hartmann, F. A., & Young, K. M. (2019). Mucoid ‎Pseudomonas ‎aeruginosa infection in a cat with severe chronic rhinosinusitis. Veterinary ‎Clinical Pathology, 48(2), ‎‎300-304.‎‏‎ https://doi.org/10.1111/vcp.12749‎‏

Tille, P. M. (2013). Bailey & Scott's Diagnostic Microbiology-E-Book: Bailey & Scott's Diagnostic ‎‎Microbiology-E-Book. Elsevier Health Sciences. ‎

Willey, J. M., Sherwood, L., & Woolverton, C. J. (2011). Prescott’s Microbiology (7th ed.). ‎McGraw-Hill, New ‎York.‎

Downloads

Published

2025-12-28

How to Cite

Antibiotic susceptibility and molecular identification of Pseudomonas aeruginosa isolated from dog and cat wound samples. (2025). Experimental and Applied Veterinary Research Journal, 1(1), 14-25. https://doi.org/10.30539/fw39ae05